Directions: Write the *exact* trigonometric value of the following problems.

$$1 \qquad \cos^{-1}\frac{\sqrt{3}}{2}$$

$$2. \sin^{-1}\frac{\sqrt{2}}{2}$$

3.
$$\arcsin(-1)$$

4
$$\cos^{-1}(-1)$$

6.
$$\tan^{-1}(-1)$$

7
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right)$$

8.
$$\tan^{-1} \sqrt{3}$$

9.
$$\arccos \frac{1}{2}$$

1).
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$

11.
$$\arccos\left(-\frac{\sqrt{2}}{2}\right)$$

12.
$$\cos^{-1} 0$$

13.
$$\tan^{-1}(0)$$

14.
$$\sin^{-1} 0$$

15.
$$\cos^{-1} 1$$

15.
$$\cos\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$$

17.
$$\sin\left(\cos^{-1}\left(-\frac{1}{2}\right)\right)$$

18.
$$\tan(\sin^{-1} 0)$$

19.
$$\cot(\cos^{-1}0)$$

20.
$$\sin^{-1}\left(\cos\left(\frac{7\pi}{6}\right)\right)$$

21.
$$\cos^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$$

22.
$$\cos^{-1}\left(\sin\left(\frac{\pi}{6}\right)\right)$$

23.
$$\sin^{-1}\left(\cos\left(\frac{5\pi}{3}\right)\right)$$

24.
$$\tan^{-1} \left(\sin \left(\frac{\pi}{2} \right) \right)$$

25.
$$\tan^{-1}\left(\cos\left(\frac{\pi}{2}\right)\right)$$

26.
$$\sin^{-1}\left(\sin\left(\frac{3\pi}{4}\right)\right)$$

$$27. \qquad \cos^{-1}\left(\sin\left(-\frac{\pi}{3}\right)\right)$$

23.
$$\cos\left(\sin^{-1}\left(\frac{1}{2}\right)\right)$$

29.
$$\sin\left(\cos^{-1}\left(\frac{1}{2}\right)\right)$$

30.
$$\tan\left(\cos^{-1}\left(\frac{-1}{2}\right)\right)$$

31.
$$\sin^{-1}\left(\cos\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)\right)$$
 32. $\tan\left(\sin^{-1}\left(\cos\left(\frac{\pi}{2}\right)\right)\right)$

32.
$$\tan\left(\sin^{-1}\left(\cos\left(\frac{\pi}{2}\right)\right)\right)$$

Notes: Right Triangle Trig

Important things to remember:

- The Pythagorean Theorem is ______.
- The six trig ratios are:
- Use the acronym "Always Study Trig Carefully" to remember which trig functions are positive in the quadrants:

<u>Problem type 1</u>: Finding a trig value given a trig value (no constraints)

Given the
$$\cos\theta = \frac{12}{37}$$
, find $\csc\theta$

You try: Given
$$\cot \beta = \frac{11}{60}$$
, find $\sin \beta$

<u>Problem type 2</u>: Finding trig values given a coordinate point (the constraint is the quadrant in which the point is located!)

EX 1: The point (20, -21) is on the terminal side of an angle in standard position. Determine the exact values of the six trigonometric functions of the angle.

You try: The point (-28, -45) is on the terminal side of an angle in standard position. Determine the exact values of the six trigonometric functions of the angle.

Problem type 3: Given a function value and an additional constraint

EX 1: Given $\sin\theta = \frac{24}{25}$; constraint: θ lies in Quadrant 2. Find the other five trig values.

EX 2: Given $\sec\theta = -\frac{113}{15}$ and $\tan\theta > 0$, find the other five trig values.

You try: Given $\cot\theta = \frac{17}{144}$ and $\cos\theta < 0$, find the other five trig values.