How Can I Solve an Oblique Triangle? (Part Deux)

The trigonometric ratios: SOH- CAH –TOA for finding sides measures

The inverse trig ratios: sin⁻¹, cos⁻¹, and tan⁻¹ for finding angle measures

The Triangle Sum Conjecture: The sum of the three interior angles of any triangle is 180°

Recall that the Law of Sines allows us to solve when given ASA, AAS or SSA. The pesky SSA leads to the Ambiguous Case which can produce 0, 1 or 2 solutions. Here is the law for solving when given SAS or SSS.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

The LAW OF COSINES: For any triangle $\triangle ABC$, $b^2=a^2+c^2-2ac\cos B$. Use this formula for SAS and SSS.

$$c^2 = a^2 + b^2 - 2ab\cos C$$

EX 4 A satellite dish can track the speed of a plane by recording the distance to the plane at two points in time and the angle through which the dish rotates. In the picture below, a satellite measured the distance to a jet at 35 miles. After 0.25 hours (15 minutes), it measured the distance to the jet at 58 miles. If the satellite rotated through an angle of 132°, determine the average speed of the plane to the nearest mile per hour.

$$d^{2} = 58^{2} + 35^{2} - 2(58)(35)\cos 132^{\circ}$$

$$d = \sqrt{58^{2} + 35^{2} - 2(58)(35)\cos 132^{\circ}}$$

$$d \approx 85.5$$

We know how to find the area of a triangle if we can establish SAS (this relates to Law of Sines problems). Let's learn how to find the area of a triangle given SSS (Heron's Formula).

Given SSS use Heron's Formula:

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$
, where $s = \frac{1}{2}(a+b+c)$
This is the "Semi-puimeter"

Find the area of a triangle whose side measures are 24 cm, 53 cm, and 39 cm.

$$5 = \frac{1}{2}(24+53+39) = 58$$

$$A = \sqrt{58(58-24)(58-53)(58-39)}$$
OR $A = \sqrt{58(34)(5)(19)}$

A = 297.9 cm

EX 2 A triangular shaped yard has sides measuring 24.1 ft., 35.0 ft., and 40.3 ft. The homeowner wants to lay sod which costs \$0.69 per square foot. How much would it cost to sod the yard?

$$A = \sqrt{49.7(49.7-24.1)(49.7-35.0)(49.7-40.3)}$$

 $A \approx 419.3 \text{ ft}^2 \times .69 = 289.31

Summarize:

For which cases do you use the Law of Sines?

AAS, ASA SSA

For which cases do you use the Law of Cosines?

 $A \approx 144.9$ yds Which situation leads to the Ambiguous Case?

SSA-