Precalculu	s Notes:	Vector

Precalculus Notes: Vectors	
What is a scalar? a quantity having magnitude (size) only NOT DIRECTION.	Examples height, length, volume, width
What is a vector? A quantity having magnitude and direction	Examples -Weight (on earthwhy?) -displacement

There are 4 different ways we will use to represent a vector:

1st: With a sketch

2nd: Using the component form

$$\langle x_2 - x_1, y_2 - y_1 \rangle$$
 ORDER MATTERS!

EX 1: Find the component form of the vector with initial point (-1, 5) and terminal point (9, -2)

You try: Find the component form of the vector with initial point (11, -6) and terminal point (2, -1)

3rd: Using Linear Combinations Form: $(x_2 - x_1)i + (y_2 - y_1)j$

EX 1: Find the linear combination form of the vector with initial point (2, 5) and terminal point (-3,-2).

$$(-3-2)i + (-2-5)j$$

-5 $i-7j$

EX 2: Change the component form of the vector $\langle 8, -3 \rangle$ to linear combinations form.

Sorry, I cut + pasted out of ORDER " Having a not so good not so good day

Imagnitude coso, magnitude sino 7 find component form of a vector given magnitude and direction: Use $\langle A\cos\theta, A\sin\theta \rangle$

EX 1: : Find the component form of a vector with magnitude 120 N at 25° west of north

EX 2: Find the component form of a vector with magnitude 30 mph at 40°

Finding the magnitude and direction of a vector given the component form

Magnitude: $\|\mathbf{v}\| = \sqrt{x^2 + y^2}$

To find direction, use right triangle trig! $\theta = \tan^{-1} \frac{y}{x}$

If your angle is in Q1, use the value in your calculator.

If your angle is in Q2 or Q3 <u>ADD 180°</u>

If your angle is in Q4 _____ADD 360°